Worksheet for 2021-10-13

Conceptual questions

Question 1. Back in Chapter 10 you saw the formula

$$
\int_{\theta_{0}}^{\theta_{1}} \frac{1}{2} r^{2} \mathrm{~d} \theta
$$

for computing polar areas. Explain how this formula is a special case of the material in $\$ 15.3$.

Computations

Problem 1. Consider the two regions
(a) $x^{2}+y^{2} \leq z \leq 2 x$
(b) $(x+1)^{2}+y^{2} \leq z \leq 2(x+1)$

How are they related? Set up integrals which evaluate the volume of each, and verify that they are equal.
Problem 2 (Stewart 15.3.40). Here is a very famous application of polar coordinates.
(a) Evaluate the expression

$$
\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

where D_{a} is the disk of radius a centered at $(0,0)$. That is, evaluate the integral in terms of a, and then compute the limit of the resulting expression.
(b) Now consider the limit

$$
\lim _{b \rightarrow \infty} \iint_{S_{b}} e^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

where S_{b} is the square with opposite corners $(-b,-b)$ and (b, b). Explain why this limit also exists and is equal to the answer from (a). Hint: Do not try to compute the integral in terms of b; it's impossible. Can you use the Squeeze Theorem somehow?
(c) The function $e^{-x^{2}}$ has no elementary antiderivative. Despite this, it is possible to compute the integral

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x=\lim _{a \rightarrow \infty} \int_{-a}^{a} e^{-x^{2}} \mathrm{~d} x
$$

Deduce the value of I from your answer to (b).
(d) The standard normal distribution is the probability distribution with density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

Verify that this is a valid density function (i.e., that it is always nonnegative and that it integrates to 1).

